MountainScenarios

Military Scenario Planning

It is hard to imagine a world where the (US) military did not make plans for a pandemic like the coronavirus (COVID-19). Each and every military must have a plan for weaponized bio-warfare. In fact, every military will have their own plans for ways they can weaponize biowarfare. Think about the types of bioweapons the terrorist groups might want to employ?

The military has been planning for the big issues of global warming and has been shouting out that climate change is one of the biggest risks to the world in the future. Droughts and rising sea levels will produce mass instability in regions, much along the line of the human tragedies in Chad, Sudan, Syria, etc. For decades now, the military has warned of the risks of climate change on US national security. Pentagon, for example, here.

With the pandemics that have passed through (Ebola, SARS, mosquito-borne) over the last 10-20 years, this too is a national security threat.

In the spirit of Scenario planning, setting up sign-posts and early warning signs, you have to wonder when the military started to escalate the coronavirus outbreak in China to the highest risk levels of world, and therefore US pandemic. November? December? The military would already have contingency plans to help other countries. By early December 2019, the signposts were visible for a spread from China to the rest of the world. By mid December, the US mainland would have been clearly at risk.

The power of having scenario plans, early warning signs, and contingency plans, can break down anywhere along the line. All of the planning in the world is useless, if you don’t react and implement.

Y2K Scenarios

Scenario Planning when the Official View of the Future is Uncertain

Scenario planning should be back in focus. We go a few years – 10 years now since the Great Recession – and we think that the current trajectory, or the “Official View”, should be consistent this time. But the corona virus brings that all back into focus, even though people are probably not taking it as seriously as they probably should. You have to look at the entire supply chain forward and backward. China plays a major role in many of the world’s supply chains. End consumers on the one hand; production supply chain on the sourcing side. If factories are closed, if people can’t go to work, if people don’t go out and buy the consumption and the supply chain get continually interrupted. China is initiating all kinds of stimulus. Telling banks to be forgiving on impacted factories seems like a good idea; no one wants the factories to go out of business because of such an exogenous event such as the virus. But other stimulus will be rather useless.
Probably no one knows, yet, how this epidemic will play out. There’s no reason to believe that this won’t be rather long and protracted for China. The consequences for China will ripple throughout the world. With a world that is densely (over) populated, there is no reason to believe that such outbreaks will not happen other places, and more frequently.
So, this brings us back to scenario planning. The advantage of scenario planning is that you can build Contingency or Disaster Recovery Plans based on various scenarios. Serious and protracted supply chain disruptions, no matter the cause, seem like logical scenarios.

Right now might be a good time to dust off the Contingency Plans and see if anything needs to be updated, or executed, because of the recent events.
In the 2018 Guide by Hall and Hinkelman, the scenario chapter discusses Y2K as the greatest scenario planning exercise in history. Read about the Y2K Scenario from that chapter (pp. 161-163). Remember that right now many companies are executing their contingency plans related to current events, many others are trying to develop them on the fly – kind of a fly-by-night approach to scenario planning.

<*This section below is reproduced here with permission of the authors.*>
The Great Scenario Planning Exercise, Y2K!
There were several major advantages to corporations’ planning – scenario planning really – that came out of the Year 2000 (Y2K) preparation process. Planners were forced to consider at least two views of the future: the official view where Y2K caused no interruptions, and the view of chaos where it caused massive interruptions (mainly because of sustained interrupts to the power grid). One of the interesting parts of this process is the spillover implication – legally, morally and brand-image-wise – of doing nothing in preparation and being wrong. The scenario planning processes associated with Y2K resulted in stronger business planning and improved disaster recovery plans (DRPs). It also helped with business continuity plans by building stronger relationships with critical business partners.
Many people would say that this is a bad example because Y2K was a bust. Actually, the major push to organize IT and transition from legacy systems has substantially contributed to increased productivity for several years after the turn of the century. Business productivity has been surprisingly low since about 2005. Two examples where the Y2K efforts proved to be well justified are Burger King and FPL.
Burger King Corporation, then a division of DIAGEO, worked very closely with franchisees and its most critical suppliers (beef, buns, fries and Coke) to make sure that there would be no interruption and that contingency plans would be in place for likely situation related to Y2K. By far the biggest risk, and the most attention to contingency planning, went to AmeriServe. AmeriServe was the number one supplier to the Burger King system that had bought out the number two supplier and now represented three-fourths of the global supply chain. Three weeks into the new Millennium, AmeriServe declared bankruptcy! The contingency plans related to distribution had fortunately been dramatically improved during 1999 and continuity actions were immediately executed. Although it had nothing to do with Y2K, per say, much if not the entire contingency plan could be used for any distributor outage.
An adjunct to the Y2K story relates to power. Once organizations got past addressing their critical IT systems, the biggest wild card was power outages. No assurances came from the power companies until just months before the turn of the millennium, and even then, not much was given in the way of formal assurances. Of course, that was too late for a big organization with brand and food safety issues to have avoided the major contingency planning efforts.
Most people did not realize how fragile and antiquated the entire power grid was until the huge Ohio, New England and Canadian black out August 14, 2003 (CNN). A cascading blackout disabled the Niagara-Mohawk power grid leaving the Ottawa, Cleveland, Detroit and New York City region without power. There was a shutdown of 21 power plants within a three-minute period because, with the grid down, there was no place to send the power. Because of a lack of adequate time-stamp information, for several days Canada was believed to be the initiator of the outage, not Iowa.
There have been similar blackouts in Europe. That Y2K could have resulted in massive outages may not have been so far-fetched after all. Ask someone who was stuck in an elevator for eight hours if the preparations for long-term power outages could have been better.
Hall (2009) developed a survival planning approach that would help an organization survive during times of extreme uncertainty, like the Great Recession. Of course, the process is far ahead if the organization already has a good strategic plan (StratPlan) that includes contingency and scenario planning.

References

Hall, E. (2009). Strategic planning in times of extreme uncertainty. In C. A. Lentz (Ed.), The refractive thinker: Vol. 1. An anthology of higher learning (1st ed., pp. 41-58). Las Vegas, NV: The Lentz Leadership Institute. (www.RefractiveThinker.com)
Hall, E. B. & Hinkelman, R. M. (2018). Perpetual Innovation™: A guide to strategic planning, patent commercialization and enduring competitive advantage, Version 4.0. Morrisville, NC: LuLu Press. ISBN: 978-1-387-31010-4 Retrieved from: http://www.lulu.com/spotlight/SBPlan

Out of Control Healthcare Costs, Delinkage may help?

We have a new blog post in IPZine about trying to control healthcare costs by taking a new twist on the linkage in BIG phara to patent protection. Check that out this article on delinkage of intellectual property protection.

In 2017 we talked about scenarios that jump out at you.

Scenarios that really stand out, including compounding effects.

One that always is front-and-center is the out-of-control escalation of healthcare costs in the US, now up to 18% of GDP. In an Nov 20 2019 blog over at IPZine there’s discussion of “delinkage” related to pharma patents that has some potential for taming the out-of-control healthcare costs.  Included in that blog post is a discussion of how long it will take before healthcare costs escalate from 18% of GDP (approx. $3.6T of the $20T GDP) to 50% of GDP, and even 100% of GDP?

Here is some of the math. You can do your own figures. Assume that Healthcare costs increase by 10% per year as they have for decades (even though that rate is lower currently). Say that GDP growth is 2.5% and inflation is 2% (real GDP growth is =+0.5%). How many years before all healthcare costs in the US reach 25%, 50%, 75% and even 100% of the US GDP!???

Year Description (+10%) Targe%GDP # of Years
2025 Years til % of GDP 25% 4.5
2034 Years til % of GDP 50% 14.1
2040 Years til % of GDP 75% 19.7
2044 Years til % of GDP 100% 23.7

That’s right, with 4 or 5 years, the total healthcare costs of the US could be 25% of GDP. In 14 years it could be 50%, and in 20 years it could represent 75% of GDP. If this doesn’t scare you into taking some actions, then you obviously don’t understand the magnitude of the problem! This was the problem that we faced for decades when Healthcare costs were increasing at 10% or more each year.

Okay, so healthcare costs are lower now since the Great Recession; let’s say they may have dropped to 5% to 7.5 increase per year (2 to 3 times CPI inflation).

At 5% healthcare inflation:

Year Description (+5%) Targe%GDP # of Years
2033 Years til % of GDP 25% 13.3
2061 Years til % of GDP 50% 41.4
2078 Years til % of GDP 75% 57.8
2089 Years til % of GDP 100% 69.4

Note that it is no longer 4 or 5 years to reach 25% of US GDP, it takes more like 13 years. It takes 40 years to reach about 50% of GDP.

When you consider that the US spends 4 times what the rest of the world spends on healthcare (about $10k) and more than twice what the typical developed country spends… For outcomes that are no better… Some place in here we need to rethink.

Hall and Knab (2012) outlined 10 other items besides healthcare costs that were non-sustainable trends/practices that appeared to have compounding and accelerating forces at play. The (US) Federal deficit is one. Each of those scenarios loom as large or larger today than back in 2012.

#scenario #healthcare #gdp #compounding #ipzine #patents #intellectualproperty

References

Hall, E., & Knab, E.F. (2012, July). Social irresponsibility provides opportunity for the win-win-win of Sustainable Leadership. In C. A. Lentz (Ed.), The Refractive Thinker: Vol. 7. Social responsibility (pp. 197-220). Las Vegas, NV: The Lentz Leadership Institute. (Available from www.RefractiveThinker.com, ISBN: 978-0-9840054-2-0)

Democratization of Power

SustainZine (SustainZine.com) blogged about a rather cool idea on the decentralization of power (here). The idea in Nature Communications is to have buildings everywhere use their renewable power sources to generate a biofuel of some type. And the authors had the Heating Ventilation and Air Conditioning (HVAC) unit extract CO2 from the atmosphere to generate the fuel. Some of the technologies they pointed to were new-er technologies that are now (hopefully) making their way into main-stream. (Read the nice summary article in Scientific American by Richard Conniff.)

Basically, everyone everywhere can now produce their own power at rates that are a fraction of lifelong utility power. Storage is now the big bottle neck to completely avoiding the grid. The distributed power should only be a big plus to the overall power grid; however, the existing power monopolies are still resisting and blocking. So complete self-containment is not only a necessity for remote (isolated) power needs, but a requirement in order to break away from the power monopolies.

In the US, there is the 30% Renewable Investment Tax Credit which makes an already good investment even better for homeowners and businesses. Plus, businesses can get accelerated depreciation making the investment crazy profitable after accounting for the tax shield (tax rate times the basis of the investment). Many of the states also sweeten the deal even more. But the 30% tax credit starts to reduce after 2019, so the move to renewable starts to drop off precipitously at the end of 2019.

You would think that the power companies would join in the solutions, and not spend so much time (and massive amounts of money) on obstructing progress. All those tall buildings that are prime candidates for wind. Think of all the rooftops, roads and parking lots worldwide that are prime candidates for solar. Distributed power. As needed, where needed. No need for new nuclear, coal or nat-gas power plants. Little need for taking up green fields with solar farms.

Of course, the oil, coal and gas companies need the perpetual dependence on the existing infrastructure. When we all stop the traditional fossil fuel train — and all indications from the IPCC show that we must stop that train sooner, not later — then all the oil and gas in the world will need to stay in the ground. Call me an optimist, or a pessimist, but I would not buy oil or gas for almost any price. I definitely wouldn’t buy into the Saudi-owned oil company spinoff.

It is probably a mistake to think that technology to take CO2 out of the atmosphere after the fact can repair past sins. Avoiding putting pollution into the air, water and land — the negawatt and the negagallon, in this case — are by far the best approach.

In Sustainzine, BizMan concluded with this thought about the here-and-now scenario, not in the future at all:

“Hidden in this whole discussion is that scenario that is here and now, not futuristic. Renewable energy is cheaper and massively cleaner than conventional energy, and it can be located anywhere. Storage, in some form, is really the bottleneck; and storage in the form of synthetic fuels is a really, really cool (partial) solution.

References

Dittmeyer, R., Klumpp, M., Kant, P., & Ozin, G. (2019, April 30). Crowd oil not crude oil. Nature Communications. DOI: 10.1038/s41467-019-09685-x

The Future of Computers and Quantum Computing Part Duex

On April 4, 2019 the DC chapter of the IEEE Computer Society Chapter on Quantum Computing (co-sponsored by Nanotechnology Council Chapter) met to see a presentation by and IBM researcher named Dr. Elena Yndurain on the subject of recent efforts by that company in the realm of quantum computing. I was fortunate enough to be able to attend. I was hoping the presentation would be technical enough to be able to better understand the basics of quantum computing in the sense of a future time-line of when this new technology would be ready for the market place as defined during the course of my own research (Jordan, 2010) which is to say that a working prototype would be ready for full-scale testing. I was disappointed.

During the set-up for the real purpose of the talk, the presenter stated that the phases of quantum computing could be thought of as being in three phases of increasing complexity: (a) quantum annealing; (b) quantum simulation; and, (c) universal quantum computing. Ultimately, the goal would be (c). But the current state of the technology is (a).

It was also stated that there were essentially three possible technologies for quantum computing: (a) super conducting loops; (b) trapped ions; and, (c) topological braiding. Both (a) and (c) require cryogenic cooling. The IBM device uses technology (a) that is cooled down to 15 miliK0 (whew!). Technology (b) involves capturing ions in an optical trap using lasers. This technology operates at room temperature but suffers from a signal-to-noise problem that (a) does not. Technology (c) was not discussed.

The IBM device is a 50-qubit machine. The basic functionality of the device is predicated on Shor’s algorithm (Shor’s algorithm, 2019) and Grover’s search algorithm (Grover’s algorithm, 2019). These mathematical algorithms were developed during the 1990s. They are complex functions so there is a real part and an imaginary part. When queried the presenter stated the gains achieved by this so-called quantum annealing device were from the simplicity of the computation not the speed of the processor. The presenter went on to say that the basic algorithms had been coded in Python (Python (programming language), 2019).

That the IBM device is based on a 50-qubit processor struck me as being a bit coincidental. Recall from my first post on this subject, there has been an effort (by some unidentified group) to develop a fault-tolerant 50-qubit device since 2000. As of the publication of the paper this had not been achieved (Dyakonov, 2019). When I asked about this, the presenter simply stated that the IBM device was fault-tolerant but declined to offer any specific statistically based response. It should be stated that, during the presentation, Dr. Yndurain remarked that information included was cherry-picked [my words, not hers] to put things in the best light. Why?

During the presentation, what became clear is that IBM is building an ecosystem around the 50-qubit device. They have rolled this thing about as the “Q” computer. In order to gain access to the device, researcher must “subscribe” to the IBM service or simply “get in the que”. One also has to go through a training/vetting process to be able to develop the particular program the researcher needs to solve a particular problem. Seriously?

It seems to me this leaves two fundamental questions on the table: (a) will quantum computing be the next great disruptive innovation that supplants silicone dioxide (Schneider, The U.S. National Academies reports on the prospects for quantum computing, 2018) (Schneider & Hassler, When will quantum computing have real commercial value? Nobody really knows, 2019) (Simonite, 2016); (b) What was the point of the presentation?

My answer to the first question is that I remain skeptical. When queried, the presenter said that the materials used were proprietary and would not be available for use by the audience. I will also say that there was a notable lack of specific information in the presentation materials that could be verified. This suggests the answer to the second question: the point of the presentation was a sales pitch. IBM seems to be building an ecosystem around this 50-qubit device that will solidify market share for what was admittedly the very earliest stage of quantum computing. IBM seems to be continuing in the tradition of Moore’s law being a social imperative not a physics-based phenomenon.

References

Dyakonov, M. (2019, March). The case against quantum computing. IEEE Specturm, pp. 24-29.

Grover’s algorithm. (2019, April 5). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Grover%27s_algorithm

Jordan, E. A. (2010). The semiconductor industry and emerging technologies: A study using a modified Delphi Method. Doctoral Dissertation. AZ: University of Pheonix.

Python (programming language). (2019, April 7). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Python_(programming_language)

Schneider, D. (2018, Dec 5). The U.S. National Academies reports on the prospects for quantum computing. Retrieved from IEEE Spectrum: https://spectrum.ieee.org/tech-talk/computing/hardware/the-us-national-academies-reports-on-the-prospects-for-quantum-computing

Schneider, D., & Hassler, S. (2019, Feb 20). When will quantum computing have real commercial value? Nobody really knows. Retrieved from IEEE Spectrum: https://spectrum.ieee.org/computing/hardware/when-will-quantum-computing-have-real-commercial-value

Shor’s algorithm. (2019, April 7). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Shor%27s_algorithm

Simonite, T. (2016, May 13). Morre’s law is dead. Now what? Retrieved from MIT Technology Review: https://technologyreview.com

The Future of Computers and Quantum Computing

Do you know what Gordon Moore actually said? In 1965 Gordon Moore observed that if you graphed in the increase of transistors on a planar semiconductor device using semi-log paper, it would describe a straight line. This observation ultimately became known as Moore’s law. The “l” is lower case in the academic literature because the law is not some grand organizing principle that explained a series of facts. Rather it was simply an observation. Moore adjusted the pronouncement in 1975 to set the vertical scale at every two years (Simonite, 2016). This so-called law has been the social imperative that has fueled innovation in the semiconductor manufacturing industry for well over 50 years. But it was a social imperative only (Jordan, 2010). It was clear from the beginning that the physics of the material would eventually get in the way of the imperative.

There is a physical limit to how far you can shrink the size of the individual devices using silicon dioxide, the underlying material of which all our electronics is made. That limit appears to be about 10 nanometers (Jordan, 2010; Simonite, 2016). There are also other more practical reasons why this limit may be unachivable such as heat disapation (Jordan, 2010). Although, given the cell phone industry seems to be driving the technology of late, significant strides have been made in reducing power consumption of these devices. This lower power consumption implies less heat generation. It also seems to imply getting away from a purely Van Neuman computational architecture toward a more parallel approach to code execution.

This brings us to the fundamental question: what technology is next? When will that technology emerge into the market place? My own research into these questions resulted in some rather interesting answers. One of the more surprising responses was the consensus about what was meant by emerging into the market place. The consensus of the Delphi panel I used in my research was when there was a full scale prototype ready for rigorous testing (Jordan, 2010). One of the most surprising answers addressed the consensus about what the technology would be that replaces silicon dioxide. My research suggests the replacement technology would be biologic in nature, RNA perhaps? The research also suggests this new technology would certainly emerge within the upcoming 30 years (Jordan, 2010). Given the research was conducted nine years ago, this suggests the new technology should be ready for full-scale prototype testing in about 20 years from now. I will address why this time frame is of significance shortly.

It turns out that this question of using RNA as a computational technology is being actively investigated. It would be difficult to predict to what extent this technology may mature over the next 20 years. But, in its current state of development, the computational speed is measured on the scale of minutes (Berube, 2019, March 7). Ignoring the problem of how one might plug a vat of RNA into a typical Standard Integrated Enclosure (SIE) aboard a US submarine, speeds on that scale are not particularly useful.

The Holy Grail of the next generation of these technologies is undoubtedly quantum computing (Dyakonov, 2019). There seems to be a lot of energy behind trying to develop this new technology with a reported “…laboratories are spending billions of dollars a year developing quantum computers.” (Dyakonov, 2019, p. 26). But we are left with the same question of when? Dyakonov divides projections into optimistic and “More cautious experts’ prediction” (p. 27). The optimists are saying between five and 10 years. The so-called more cautious prediction is between 20 and 30 years. This more cautious realm fit with my research as well (Jordan, 2010).

The real problem with achieving a working quantum computer is the shear magnitude of the technical challenges that must be overcome. In a conventional computer, it is the number of states of the underlying transistors that determine the computational ability of the machine. In this case a machine with N transistors will have 2N possible states. In the quantum computer, the device is typically the electron that will have a spin of up or down.  The probability of a particular electron spin being in a particular state varies continuously where the sum of the probability of up and the probability of down equaling 1. The typical term used to describe a quantum device used in this way is the “quantum gates” (Dyakonov, 2019, p. 27) or qubits. How many qubits would it take to make a useful quantum computer? The answer is somewhere between 1,000 and 100,000 (Dyakonov, 2019). This implies that to be able to make useful computations a quantum machine would have to something on the order of 10300 qubits. To illustrate how big a number that is I quote: “it is much, much greater than the number of sub-atomic particles in the observable universe.” (Dyakonov, 2019, p. 27). The problem is that of errors. How would one go about observing 10300 devices and correcting for errors? There was an attempt in the very early years of this century to develop a fault-tolerant quantum machine that used 50 qubits. That attempt has been unsuccessful as of 2019.

The basic research being done is of considerable value and much is being learned. Will we ever see a full-scale prototype ready for rigorous testing? I am beginning to doubt it. I am of the opinion that a usable quantum computer is not unlike controlled fusion: the ultimate solution, but always about 10 years out. So next year, our quantum computer (and controlled fusion for that matter) will not be nine years out but still another 10 years.

 

References

Dyakonov, M. (2019, March). The case against quantum computing. IEEE Specturm, pp. 24-29.

Jordan, E. A. (2010). The semiconductor industry and emerging technologies: A study using a modified Delphi Method. Doctoral Dissertation. AZ: University of Pheonix.

Simonite, T. (2016, May 13). Morre’s law is dead. Now what? Retrieved from MIT Technology Review: https://technologyreview.com

 

 

More prisoners in US than any other country: Criminal (In)Justice Scenarios

Here are Scenarios and sources of the injustice in the Criminal Justice system in the USA.

The US has the most people incarcerated of any country in the world… Even though we only have 4.3% of the world’s population, we have more inmates — 2.2 million — than China (1.5m) and India (0.3m), combined (36.4% of world population)! We have 23% of China’s population but 40% more incarcerated. We have almost 1% of our population (0.737%) incarcerated! We have 6 times higher incarceration rate than China, 12 times higher that Japan, and 24 times the rates in India and Nigeria. That’s right, an American has a 1,200% greater chance of being incarcerated than a Japanese citizen. We have even a 20% higher incarceration rate than Russia with 0.615% of their population in (Siberian) prisons and jails.

I know what you’re thinking, Americans must be more criminally inclined than any other country in the universe. And, no, it is not those *bleeping* Mexicans. The evidence shows that the Mexicans (legal or otherwise) cause less crimes than the typical “American”, plus crimes involving illegal Mexicans are far more likely to go unreported.

So now, I’m at a loss. Where did the criminal genes come from? You can’t really blame the American Indians.

Some of the ugly mechanisms and profits in the prison system are summarized nicely here in ATTN by Ashley Nicole Black, Who Profits from Prisons (Feb, 2015).

“There are currently [2.2 million] American in prisons. This number has grown by 500 percent in the past 30 years. While the United States has only [4.3] percent of the world’s population, it holds 25 percent of the world’s total prisoners. In 2012, one in every 108 adults was in prison or in jail, and one in 28 children in the U.S. had a parent behind bars.”

For years I heard stats that half of the people in prison in the USA were for non-violent (no weapon) drug offenses. That’s insane. It seems like the wrong people are institutionalized here. With the legalization of marijuana in many states these incarceration rates should be reducing (improving). July 2018 shows 46% of US inmates are for drug offenses: https://www.bop.gov/about/statistics/statistics_inmate_offenses.jsp

Okay, so what does that have to do with scenarios and scenario planning? What would be some of the scenarios that might lead to something more sane in terms of our incarceration rates. One approach would be to focus on those deflection points that might result in a lower level of criminals (criminal activity). Just one would be a new approach related to the prohibition of marijuana. As we learned from alcohol, prohibition doesn’t work. But there are several other ways to provide a mechanism for less criminal activity and/or less people incarcerated and/or less people incarcerated for so long. We’ll talk about two of our favorites at a later time: education and community engagement/involvement. (The Broken Window concept of fixing up the community and more local engagement is very intriguing. See article by Eric Klinenberg here.)

The big thing that escalated US incarceration rates was a get-tough-on-crime movement that began during the Nixon “I’m-not-a-crook” era. Part of this was obviously to have some tools to go after the hippies and the protesters. Tough on crime with mandatory sentences, lots of drug laws, and 3-strike laws came into being. Not to be outdone, as the toughest on crime, the 3-strikes moved to 2-strikes to, essentially 1-stike. As we filled up the prisons, we had to build more.

One current trend that should increase incarceration is the current epidemic of opioid-ish drug overdoses. Most forces, however, seem to be pushing toward reductions in incarceration.

Various scenarios should lead to a significant reduction in incarceration rates. The resulting scenario of low incarceration should have several ramifications. If you are in the business of incarceration, then business should – ideally – get worse and worse. Geo and Corrections Corp of America (now CoreCivic) should expect their business to drop off precipitously. Plus, there seem to be several movements away from private (or publicly traded) companies back toward government run prisons because private has been shown to be less effective — even if cheaper on the inmate-year bases.

Here’s a discussion of the business of incarceration. Note that the “costs” of incarceration are far, far more than the $50,000+/- it costs per year per inmate. Plus, having more people as productive members of society has them working (income and GDP) and paying taxes, not a dead weight on society.

Do you think that the relaxation of marijuana laws might be a “Sign Post” (in scenario terms) that indicates a rapid drop in prison population? Also, super full employment, might be a solution all by itself. People, especially kids, who can get jobs and do something more productive, may be less inclined to get into drugs and mischief? There’s no reason why the Sign Post need to be only one, or even two signs. In fact, the crime system is just a sub-system of an economy. Multiple reinforcing systems can be really powerful.

If we do take other approaches to the incarceration system, what would those approaches be? And who (what businesses/industries) would benefit most?

What do you think? Is it time to get out of the criminal (in)justice system?

Resources

Half of the world’s incarcerated are in the US, China and Russia: http://news.bbc.co.uk/2/shared/spl/hi/uk/06/prisons/html/nn2page1.stm

Incarceration Rates: https://www.prisonpolicy.org/global/2018.html

US Against the world: https://www.statista.com/statistics/300986/incarceration-rates-in-oecd-countries/

New Yorker Article in Sept 2016 by Eric Markowitz, Making Profits on the Captive Prison Market.

How for-profit prisons have become the biggest lobby no one is talking about, by Michael Cohen in 2015.

Follow the money, in 2017, with a great infographic as to where all the prison moneys go.

Salt and Battery, When does Storage make Fossil Fuel Obsolete

Last week the world’s biggest Electric Vehicle (EV) battery company made a big opening splash on its IPO. CATL is a Chinese company that IPOed with a massive 44% pop on open. The company offered up only 10% of the shares in the IPO, valuing the company at more than $12B. China has limits on how much a company can IPO at (price based on PE ratio) and a 44% limit on the amount an IPO can rise in first day of trading. Expect this company to jump continually for some time. CATL is now the largest EV battery company in the world, primarily with lithium-ion for autos.

Of course, you can just use power as needed, when needed. With the rapid increase in efficiencies of wind (where the wind blows) and solar (where the sun shines) this is becoming ever-more critical. Once the infrastructure of transmission lines are in place, the renewable power plants are far more cost effective than any other options. Both wind and solar are now less than $.02 per KW, and the combined wind-solar is coming in at less than $.03. Such new power can come onboard in months, not years or decades required for other types of power.

Still, the problem is smoothing out the power for night time when the wind is not blowing. Thus the reliance on storage if we are to move to total renewables. If – well, when – the combined renewable energy and storage costs are lower than coal, oil and natgas, there will be no need for fossil fuels, except maybe for those places where the sun doesn’t shine (much) and the wind doesn’t blow (much).

There are many different options for storage of energy.

Fixed storage can be in the form of solar that moves water (back upstream to a dam that is above the existing hydro power system). It can use mirrors to focus heat for molten salt, for example.

The old lead battery technology has been tried and proved for a century and still is alive and well in the golf-carts.

Many players are after the battery storage market. GE is fighting hard against Tesla (powerwall battery built in their GigaFactories for fixed and battery packs for their cars) and Siemens. Storage options that are as good, or better, then lithium are coming fast to market for different applications. See a great view of new battery technologies in Pocket Lint. Batteries technologies that contain more carbon, nickel or cobalt seem very intriguing. Hydrogen options using fuel cell has been right at the edge of mass breakthrough into the market for decades.

When will certain storage options become a game-changer for existing “built economy” such as fossil fuels?

At some point, the combined renewable and storage will be sufficiently powerful and affordable to render the old fossil fuel options obsolete. McKinsey report discusses this massive drop in price and trend in their battery report. In 2010 battery storage cost about $1,000 per kilowatt hour of storage; their June 2017 report shows it at $230 per kwh in 2016 and dropping fast. It should be well below $200 per kwh now. (Batteries for the Telsa Model 3 are supposed to be at about $190 per kWh based on mass manufacturing; estimates based on SEC filings are for $157 kWh by 2020.)

So, what is the break-even point where storage becomes the game changer, and renewables with battery deflect the entire energy industry onto another course? Apparently, $125 per kWh is the disruptive price point. A scientist name Cadenza has developed battery technology at this price point using super cell and is now working on an extended version that includes the peripherals with the battery at, or below, the magical $125 kWh. She must demonstrate both cheaper and safer, so the housing is critical to avoid fires and short-circuits. “In March of this year, Cadenza published its report (pdf) saying that its super-cell technology can indeed hit that point.”

The technology is already here, yet new improvements are leap-frogging each competing option. How long before fossil fuels are an obsolete option? For just plain generation, fossils are dead and dying. Combined is where the war is won, however.

We argue that you really want to be careful with your oil and gas investments because you can find yourselves, like the oil patch (countries and companies and refiners) with stranded assets.

Moore’s law is at work in the battery complex. How long before combined renewables with storage supplants fossil fuels? Five years? Ten? Twenty?

Consensus too, outcomes and consensus

Consensus continues to be a big issue is designing a Delphi Study. It is more than a little helpful to figure out how the results will be presented and how consensus will be determined. Even if consensus is not really necessary, any and all Delphi studies will be looking for the level of agreement as a critical aspect of the research. Look at our prior blog article  Consensus: Let’s agree to look for agreement, not consensus. Hall (2009) talks about suggested approaches to consensus in the Delphi Primer including the RAND/UCLA approach used in medical protocol research. Hall said: “A joint effort by RAND and the University of California is illustrated in The RAND/UCLA appropriateness method user’s manual. (Fitch, Bernstein, Aguilar, Burnand, LaCalle, Lazaro, Loo, McDonnell, Vader & Kahan, 2001, RAND publication MR-1269) which provides guidelines for conducting research to identify the consensus from medical practitioners on treatment protocol that would be most appropriate for a specific diagnoses.”

In the medical world, agreement can be rather important. Burnam (2005) has a simple one page discussion about the RAND/UCLA method used in medical research. The key points by Burnam and the RAND/UCLA are:

  • Experts are readily obvious and selected by their outstanding works in the field. They may publish research on the disease in question and/or be a medical practitioner in the field (like a medical doctor).
  • The available research is organized and presented to the panel.
  • The RAND/UCLA method suggests the approach/method to reach consensus.
  • The goal is to recommend an “appropriate” protocol.

Appropriate is clear. Burnam says, “appropriate, means that the expected benefits of the health intervention outweigh the harms and inappropriate means that expected harms outweigh benefits. Only when a high degree of consensus among experts is found for appropriate ratings are these practices used to define measures of quality of care or health care performance.”

Burman compares and contrasts the medical protocol with an approach used by Addington et al. (2005)that includes many other factors (stakeholders). Seven different stakeholder groups were represented, therefore the performance measures selected by the panel to be important represented a broader spectrium. The Addington et al. study included other performance measures including various dimensions of patient functioning and quality of life, satisfaction with care, and costs.

Burman generally liked the addition of other factors, not just medical outcomes, saying that she applauds Addington et al. “for their efforts and progress in this regard. Too often clinical services and programs are evaluated only on the basis of what matters most to physicians (symptom reduction) or payers (costs) rather than what matters most to patients and families (functioning and quality of life).”

The two key take-aways from this comparison for researchers considering a Delphi Method research. Decide in advance how the results will be presented, and how consensus will be determined. If full consensus is really necessary – as in the case of a medical protocol – then fully understand that at the beginning of the research. Frequently, it is more important to know the level of importance for various factors in conjunction with the level of agreement. In business, management, etc., the practitioner can review the totality of the research in order to apply the findings as needed, where appropriate.

References

Addington, D., McKenzie, E., Addington, J., Patten, S., Smith, H., & Adair, C. (2005). Performance Measures for Early Psychosis Treatment Services. Psychiatric Services, 56(12), 1570–1582. doi:10.1176/appi.ps.56.12.1570

Burnam, A. (2005). Commentary: Selecting Performance Measures by Consensus: An Appropriate Extension of the Delphi Method? Psychiatric Services, 56(12), 1583–1583. doi:10.1176/appi.ps.56.12.1583

Fitch K., Bernstein S.J., Aguilar M.D., Burnand, B., LaCalle, J.R., Lazaro, P., Loo, M., McDonnell, J. & Vader, J.P., Kahan, J.P. (2001). The RAND/UCLA appropriateness method user’s manual. Santa Monica, CA: RAND Corporation. Document MR-1269. Retrieved July 3, 2009, from: http://www.rand.org/publications/

Hall, E. (2009). The Delphi primer: Doing real-world or academic research using a mixed-method approach. In C. A. Lentz (Ed.), The refractive thinker: Vol. 2. Research methodology (2nd ed., pp. 3-28). Las Vegas, NV: The Lentz Leadership Institute. (www.RefractiveThinker.com)

Scenarios of Stranded Assets in the Oil Patch

The researchers over at Strategic Business Planning Company have been contemplating scenarios that lead to the demise of oil. The first part of the scenario is beyond obvious. Oil (and coal) are non-renewable resources; they are not sustainable; burning fossil fuels will stop — eventually. It might cease ungracefully, and here are a few driving forces that suggest the cessation of oil could come sooner, not later. Stated differently, if you owned land that is valued based on carbon deposits, or if you owned oil stocks those assets could start to become worth less (or even worthless).

We won’t spend time on the global warming scenario and possible ramifications of government regulation and/or corporate climate change efforts. These could/would accelerate the change to renewables. There are other drivers away from fossil fuels including: National Security, Moore’s Law toward renewables; and, efficiency.

1. National Security. Think about all the terrorist groups and rogue countries. All of them get part, or all of their funding from oil (and to a lesser extent, NatGas and Coal). Russia. Iran. Lebanon, where the Russians have been enjoying the trouble they perpetuate. The rogue factions in Nigeria. Venezuela. Even Saudi is not really are best friend (15 of the 19 bombers on 911 were Saudi citizens). Imagine if the world could get off of fossil fuels. Imagine all the money that would be saved, by not having to defend one countries aggression on another if the valuable oil became irrelevant. Imagine how much everyone would save on military. This is more than possible with the current technology; but with Moore’s law of continuous improvement, it becomes even more so.

2. Moore’s Law. Moore’s law became the law of the land during the computer chip world, where technology is doubling every 18 months, and costs are reducing by half.  (See our blog on The Future of Computing is Taking on a Life of Its Own. After all these decades Moore’s law is finally hitting a wall.) In the renewable world, the price of solar is dropping dramatically, when the efficiency continues to increase. For example the increase of 30% on imported PV, matches the cost reductions of the last year. In the meanwhile battery efficiency is improving dramatically, year-over-year. Entire solar farms have been bid (and built) for about $.02 per kilowatt and wind and/or solar with battery backup is about $.03 per kilowatt. At that price, it is far cheaper to install renewable power vs coal or NatGas, especially given the years to create/develop for fossil fuel plants.

Note, that we haven’t even talked about peak coal and peak oil. Those concepts are alive and well, just that fracking technology has pushed them back maybe 10 years from a production supply-side perspective. At some point you hit the maximum possible production (on a non-renewable resource) and production can only go down (and prices go up) from there. The world production of oil is now up to 100m barrels per day.  But oil wells deplete at about 4%-5%, so you need 4% more new wells every year. Fracking drops about 25%-30% in the first year! So you need about many more wells each year to stay even. But let’s go on to efficiency and probably the major demand-side force.

3. Efficiency. The incandescent light bulb, produces very little light… it produces more than 95% heat, and just a tiny bit of light with 100 watts of energy. With only 10-15 watts an LED light can produce the same light was required 100 watts in days of old. The internal combustion engine is hugely inefficient, producing mostly (unused) heat and directly harnessing only 10-15% of energy from gas or diesel… plus it took huge amounts of energy to mine, transport, refine, transport, and retail the fuel. Electric engines are far more efficient, and they produce no toxic emissions. A great book that talks about energy, efficiency and trends is by Ayers & Ayers, Crossing the Energy Divide. The monster power plants (nuclear, coal, NatGas) have serious efficiency issues. They produce huge amounts of heat for steam turbines, but most of the heat is lost/wasted (lets say 50%). Electricity must be transmitted long distances through transmission lines (where up to 40% can be lost in transmission).

Producing power as needed, where needed, makes so much more sense in most cases. Right now, using today’s technology, pretty much everyone can produce most of their own power (PV or wind) at about the same cost as the power monopolies.  But Moore’s law is making the renewable technology better and better every year. Add some batteries and microgrid technology and you have robust electric systems.

The losers in these trends/scenarios can be the BIG oil companies and the electric monopolies. They will fight move until they change, or they lose. Just like peak oil, it is a mater of time… but the time is coming faster and faster…

Saudi is trying to keep prices high enough to complete their oil Initial Public Offering so they can diversify out of oil. Venezuela is offering a new cyber coin IPO (their Petro ICO) with barrels of buried oil as collateral (See Initial Kleptocurrency Offering). But what if that oil becomes a stranded asset? Your Petro currency becomes as worthless as the Venezuelan Bolivar.

You really want to carefully consider how much and how long you want to own fossil fuel assets… Fossil fuels may be dead in a decade or two… Moore or less.

Page 2 of 4

Powered by WordPress & Theme by Anders Norén